Extensions 1→N→G→Q→1 with N=C32 and Q=C4.A4

Direct product G=N×Q with N=C32 and Q=C4.A4
dρLabelID
C32×C4.A4144C3^2xC4.A4432,699

Semidirect products G=N:Q with N=C32 and Q=C4.A4
extensionφ:Q→Aut NdρLabelID
C32⋊(C4.A4) = C6.(S3×A4)φ: C4.A4/Q8C6 ⊆ Aut C327212+C3^2:(C4.A4)432,269
C322(C4.A4) = C4○D4⋊He3φ: C4.A4/C4○D4C3 ⊆ Aut C32726C3^2:2(C4.A4)432,339
C323(C4.A4) = C3×Dic3.A4φ: C4.A4/SL2(𝔽3)C2 ⊆ Aut C32484C3^2:3(C4.A4)432,622
C324(C4.A4) = C3⋊Dic3.2A4φ: C4.A4/SL2(𝔽3)C2 ⊆ Aut C32144C3^2:4(C4.A4)432,625

Non-split extensions G=N.Q with N=C32 and Q=C4.A4
extensionφ:Q→Aut NdρLabelID
C32.(C4.A4) = Q8⋊C94C6φ: C4.A4/C4○D4C3 ⊆ Aut C32726C3^2.(C4.A4)432,338
C32.2(C4.A4) = Q8⋊C93S3φ: C4.A4/SL2(𝔽3)C2 ⊆ Aut C321444C3^2.2(C4.A4)432,267
C32.3(C4.A4) = C3×Q8.C18central extension (φ=1)216C3^2.3(C4.A4)432,337

׿
×
𝔽